Politics

Months-long seismicity transients preceding the 2023 MW 7.8 Kahramanmaraş earthquake, Türkiye – Nature Communications


  • Mignan, A. The debate on the prognostic value of earthquake foreshocks: a meta-analysis. Sci. Rep. 4, 4099 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bouchon, M., Durand, V., Marsan, D., Karabulut, H. & Schmittbuhl, J. The long precursory phase of most large interplate earthquakes. Nat. Geosci. 6, 299–302 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kato, A. et al. Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku-Oki earthquake. Science 335, 705–708 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Schurr, B. et al. Gradual unlocking of plate boundary-controlled initiation of the 2014 Iquique earthquake. Nature 512, 299–302 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Socquet, A. et al. An 8-month slow slip event triggers progressive nucleation of the 2014 Chile megathrust. Geophys. Res. Lett. 44, 4046–4053 (2017).

    Article 
    ADS 

    Google Scholar 

  • Ellsworth, W. L. & Beroza, G. C. Seismic evidence for an earthquake nucleation phase. Science 268, 851–855 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ben-Zion, Y. & Zaliapin, I. Spatial variations of rock damage production by earthquakes in southern California. Earth Planet. Sci. Lett. 512, 184–193 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ben-Zion, Y. & Zaliapin, I. Localization and coalescence of seismicity before large earthquakes. Geophys. J. Int. 223, 561–583 (2020).

    Article 
    ADS 

    Google Scholar 

  • Kato, A., & Ben-Zion, Y. The generation of large earthquakes. Nat. Rev. Earth Environ. 2, 26–39 (2020).

  • Pritchard, M. E. et al. New opportunities to study earthquake precursors. Seismol. Res. Lett. 91, 2444–2447 (2020).

    Article 

    Google Scholar 

  • Inan, S., Ergintav, S., Saatçilar, R., Tüzel, B. & İravul, Y. Turkey makes major investment in earthquake research, Eos Trans. AGU 88, 333–334 (2007).

    Google Scholar 

  • Melgar, D. et al Sub- and super-shear ruptures during the 2023 Mw 7.8 and Mw 7.6 earthquake doublet in SE Türkiye. Seismica (2023)

  • Toda, S. et al. Stress change calculations provide clues to aftershocks in 2023 Türkiye earthquakes. Temblor (2023).

  • Eberhart-Phillips, D. et al. The 2002 Denali Fault earthquake, Alaska: a large magnitude, slip-partitioned event. Science 300, 1113–1118 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cesca, S. et al. Complex rupture process of the Mw 7.8, 2016, Kaikoura earthquake, New Zealand, and its aftershock sequence. Earth Planet. Sci. Lett. 478, 110–120 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McKenzie, D. The East Anatolian Fault: a major structure in Eastern Turkey. Earth Planet. Sci. Lett. 29, 189–193 (1976).

    Article 
    ADS 

    Google Scholar 

  • Aktug, B. et al. Slip rates and seismic potential on the East Anatolian Fault System using an improved GPS velocity field. J. Geodyn. 94-95, 1–12 (2016).

    Article 

    Google Scholar 

  • Ambraseys, N. N. & Jackson, J. A. Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region. Geophys. J. Int. 133, 390–406 (1998).

    Article 
    ADS 

    Google Scholar 

  • Ambraseys, N. N. & Melville, C. P. Historical evidence of faulting in eastern Anatolia and northern Syria. Ann. Geophys. 38, 337–343 (1995).

    Article 

    Google Scholar 

  • Duman, T. Y. & Emre, Ö. The East Anatolian Fault: geometry, segmentation and jog characteristics. Geol. Soc. Spec. Publ. 372, 495–529 (2013).

    Article 
    ADS 

    Google Scholar 

  • Konca, A. O. et al. From interseismic deformation with near-repeating earthquakes to co-seismic rupture: a unified view of the 2020 MW6.8 Sivrice (Elazıg) Eastern Turkey Earthquake. J. Geophys. Res. 126-10, e2021JB021830 (2021).

    Article 
    ADS 

    Google Scholar 

  • Senturk, S., Çakir, Z. Ergintav, S. & Karabulut, H. Reactivation of the Adıyaman Fault (Turkey) through the Mw 5.7 2007 Sivrice earthquake: an oblique listric normal faulting within the Arabian-Anatolian plate boundary observed by InSAR. J. Geodyn. 131, 101654 (2019).

  • Ben-Zion, Y. & Sammis, C. G. Characterization of fault zones. Pure Appl. Geophys. 160, 677–715 (2003).

    Article 
    ADS 

    Google Scholar 

  • Khalifa, A., Çakir, Z., Owen, L. & Kaya, Ş. Morphotectonic analysis of the East Anatolian Fault, Turkey. Turkish J. Earth Sci. 27, p110–p126 (2018).

    Article 

    Google Scholar 

  • Güvercin, S. E., Karabulut, H., Konca, A. Ö., Doğan, U. & Ergintav, S. Active seismotectonics of the East Anatolian Fault. Geophys. J. Int. 230, 50–69 (2022).

    Article 
    ADS 

    Google Scholar 

  • Wiemer, S. & Wyss, M. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the Western United States & Japan. Bull. Seismol. Soc. Am. 90, 859–869 (2000).

    Article 

    Google Scholar 

  • Scholz, C. H. On the stress dependence of the earthquake b-value. Geophys. Res. Lett. 2014, GL062863 (2015).

    Google Scholar 

  • Main, I. G. A modified Griffith criterion for the evolution of damage with a fractal distribution of crack lengths: application to seismic event rates and b-values. Geophys. J. Int. 107, 353–362 (1991).

    Article 
    ADS 

    Google Scholar 

  • Zhu, W. & Beroza, G. C. PhaseNet: a deep-neural-network-based seismic arrival-time picking method. Geophys. J. Int. 216, 261–273 (2019).

    ADS 

    Google Scholar 

  • Zhu, W., McBrearty, I. W., Mousavi, S. M., Ellsworth, W. L. & Beroza, G. C. Earthquake phase association using a Bayesian Gaussian mixture model. J. Geophys. Res. Solid Earth 127, e2021JB023249 (2022).

    Article 
    ADS 

    Google Scholar 

  • Martínez-Garzón, P., Beroza, G. C., Bocchini, G. M. & Bohnhoff, M. Sea level changes affect seismicity rates in a hydrothermal system near Istanbul. Geophys. Res. Lett. 50, e2022GL101258 (2023).

    Article 
    ADS 

    Google Scholar 

  • Lomax, A., J. Virieux, P. Volant, & C. Berge. in Advances in Seismic Event Location (eds Thurber, C. H. & Rabinowitz, N.) 101–134 (Kluwer, 2000).

  • Waldhauser, F. & Ellsworth, W. L. A double-difference earthquake location algorithm: method and application to the northern Hayward fault. Bull. Seismol. Soc. Am. 90, 1353–1368 (2000).

    Article 

    Google Scholar 

  • Petersen, G. M. et al. The 2023 Southeast Türkiye seismic sequence: rupture of a complex fault network. Seismic Rec. 3, 134–143 (2023).

    Article 

    Google Scholar 

  • McLaskey, G. C. Earthquake initiation from laboratory observations and implications for foreshocks. J. Geophys. Res. Solid Earth 124, 12882–12904 (2019).

    Article 
    ADS 

    Google Scholar 

  • Dresen, G., Kwiatek, G., Goebel, T. & Ben-Zion, Y. Seismic and aseismic preparatory processes before large stick–slip failure. Pure Appl. Geophys. 177, 5741–5760 (2020).

    Article 
    ADS 

    Google Scholar 

  • Cattania, C. & Segall, P. Precursory slow slip and foreshocks on rough faults. J. Geophys. Res. Solid Earth 126, e2020JB020430 (2021).

    Article 
    ADS 

    Google Scholar 

  • Bulut, F. et al. The East Anatolian Fault Zone: seismotectonic setting and spatiotemporal characteristics of seismicity based on precise earthquake locations. J. Geophys. Res. Solid Earth (2012).

  • Huang, H., Meng, L., Bürgmann, R., Wang, W. & Wang, K. Spatio-temporal foreshock evolution of the 2019 M 6.4 and M 7.1 Ridgecrest, California earthquakes. Earth Planet. Sci. Lett. 551, 116582 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ellsworth, W. L. & Bulut, F. Nucleation of the 1999 Izmit earthquake by a triggered cascade of foreshocks. Nat. Geosci. 11, 531 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yoon, C. E., Yoshimitsu, N., Ellsworth, W. L. & Beroza, G. C. Foreshocks and mainshock nucleation of the 1999 Mw 7.1 Hector Mine, California, Earthquake. J. Geophys. Res. Solid Earth 124, 1569–1582 (2019).

    Article 
    ADS 

    Google Scholar 

  • Manighetti, I., Campillo, M., Bouley, S. & Cotton, F. Earthquake scaling, fault segmentation, and structural maturity. Earth Planet. Sci. Lett. 253, 429–438 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Martínez-Garzón, P., Bohnhoff, M., Ben-Zion, Y. & Dresen, G. Scaling of maximum observed magnitudes with geometrical and stress properties of strike-slip faults. Geophys. Res. Lett. 2015, GL066478 (2015).

    Google Scholar 

  • Kato, A., Fukuda, J., Kumazawa, T. & Nakagawa, S. Accelerated nucleation of the 2014 Iquique, Chile Mw 8.2 earthquake. Sci. Rep. 6, 24792 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, S. et al. Fault strength and rupture process controlled by fault surface topography. Nat. Geosci. (2023).

  • Goebel, T. H. W., Kwiatek, G., Becker, T. W., Brodsky, E. E. & Dresen, G. What allows seismic events to grow big?: insights from b-value and fault roughness analysis in laboratory stick-slip experiments. Geology 45, 815–818 (2017).

    Article 
    ADS 

    Google Scholar 

  • Kwiatek, G. et al. Complex multi-scale preparatory processes of stick-slip events on rough laboratory faults. ESS Open Archive. (2023).

  • Ben-Zion, Y., Eneva, M. & Liu, Y. Large earthquake cycles and intermittent criticality on heterogeneous faults due to evolving stress and seismicity. J. Geophys. Res. (2003)

  • Danciu, L. et al. The 2020 Update of the European Seismic Hazard Model: Model Overview. EFEHR Technical Report 001, v1.0.0. (EFEHR, 2021).

  • Chiaraluce, L., Collettini, C., Cattaneo, M. & Monachesi, G. The shallow boreholes at The AltotiBerina near fault Observatory (TABOO; northern Apennines of Italy). Sci. Drill. 17, 31–35 (2014). 2014.

    Article 

    Google Scholar 

  • Bohnhoff, M. et al. GONAF-the borehole Geophysical Observatory at the North Anatolian Fault in the eastern Sea of Marmara. Sci. Drill. 5, 1–10 (2017).

    Google Scholar 

  • Ben-Zion, Y., Beroza, G. C., Bohnhoff, M., Gabriel, A. A. & Mai, P. M. A grand challenge international infrastructure for earthquake science. Seismol. Soc. Am. 93, 2967–2968 (2022).

    Google Scholar 

  • Disaster and Emergency Management Authority. Turkish National Seismic Network [Dataset]. Department of Earthquake, Disaster and Emergency Management Authority (1990). (1990).

  • Tan, O. A homogeneous earthquake catalogue for Turkey. Nat. Hazards Earth Syst. Sci. 21, 2059–2073 (2021).

    Article 
    ADS 

    Google Scholar 

  • Hanks, T. C. & Kanamori, H. A moment magnitude scale. J. Geophys. Res. 84, 2348–2350 (1979).

    Article 
    ADS 

    Google Scholar 

  • Ester, M., Kriegel, H.-P., Sander, J. & Xiaowei, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. Second International Conference on Knowledge Discovery in Databases and Data Mining 226–231 (OSTI, 1996).

  • van der Elst, N. J. B-positive: a robust estimator of aftershock magnitude distribution in transiently incomplete catalogs. J. Geophys. Res. Solid Earth 126, e2020JB021027 (2021).

    Article 
    ADS 

    Google Scholar 

  • Kwiatek, G. et al. Limited earthquake interaction during a geothermal hydraulic stimulation in Helsinki, Finland. J. Geophys. Res. Solid Earth 127, e2022JB024354 (2022).

    Article 
    ADS 

    Google Scholar 

  • van der Elst, N. J. & Brodsky, E. E. Connecting near-field and far-field earthquake triggering to dynamic strain. J. Geophys. Res. Solid Earth (2010).

  • Kandilli Observatory and Earthquake Research Institute, Boğaziçi University. Kandilli Observatory and Earthquake Research Institute (KOERI) [Dataset]. International Federation of Digital Seismograph Networks. (1971).

  • Lomax, A., Michelini, A. & Curtis, A. in Encyclopedia of Complexity and System Science, Part 5 2449–2473 (Springer, 2009).

  • Emre, Ö. et al. Active fault database of Turkey. Bull. Earthq. Eng. 16, 3229–3275 (2018).

    Article 

    Google Scholar 



  • Source link